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The connection between fluid flow and optical flow is explored in typical flow
visualizations to provide a rational foundation for application of the optical flow
method to image-based fluid velocity measurements. The projected-motion equations
are derived, and the physics-based optical flow equation is given. In general, the optical
flow is proportional to the path-averaged velocity of fluid or particles weighted with
a relevant field quantity. The variational formulation and the corresponding Euler–
Lagrange equation are given for optical flow computation. An error analysis for
optical flow computation is provided, which is quantitatively examined by simulations
on synthetic grid images. Direct comparisons between the optical flow method and
the correlation-based method are made in simulations on synthetic particle images
and experiments in a strongly excited turbulent jet.

1. Introduction
Quantitative measurements of velocity fields of flows are of fundamental importance

in the studies of fluid mechanics, aerodynamics and thermal/fluid sciences in order to
understand the physics of complex flows. Particle image velocimetry (PIV) is a widely
used technique based on local spatial correlation between two successive particle
images for global measurements of velocity fields (Adrian 1991; Raffel, Willert &
Kompenhans 1998). When the particle concentration is sufficiently low that the
correspondence between individual particles at successive instants can be identified,
particle-tracking velocimetry (PTV) is applicable (Maas, Gruen & Papantoniou 1993;
Dracos & Gruen 1998). Without a particular awareness of fluid mechanics problems,
computer vision scientists have studied the optical flow problem to analyse the
general visual motion in images produced by a moving rigid or quasi-rigid body in
the physical world. To determine the visual motion from a time sequence of images,
Horn & Schunck (1981) originally suggested the brightness constraint equation for
the image intensity and proposed a variational formulation for computing the optical
flow. Since then, considerable efforts have been made to solve this equation with
various constraints (Barron, Fleet & Beauchemin 1994; Haussecker & Fleet 2001).

The optical flow is defined as the velocity field in the image plane that transforms
one image into the next image in a time sequence. In fact, the brightness constraint
equation assumes that the image intensity remains invariant along a stream of images.
However, the brightness constraint equation is not derived from any physical principle
for a physical process, and therefore it does not exactly hold from a physical point of
view. More importantly, the optical flow in the brightness constraint equation does
not have a clearly defined physical meaning, and as a result it cannot be generally
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and directly used for quantitative measurements of physical quantities from images
for most scientific and engineering problems.

Nevertheless, from a standpoint of methodology, the optical flow method clearly
has a great potential in the determination of high-resolution velocity fields from
various images of continuous patterns. Images acquired by optical sensors in various
flows in laboratories and nature are the continuous visual representations of some
physical quantities such as images of laser-sheet-induced fluorescence, schlieren images
of compressible shear layers, images of large-scale cloud motions in planetary
atmospheres and infrared images of large-scale motions in oceans. In addition,
the variational formulation for optical flow computation can be easily adapted to
incorporate suitable physical and geometric constraints into a particular problem.
Therefore, it is desirable to explore a rational foundation for application of the
optical flow method in fluid mechanics measurements, providing a useful alternative
to existing techniques.

Recent effort has been made to apply the optical flow method to flow measurements.
Quenot, Pakleza & Kowalewski (1998) proposed the optical flow method with dynamic
programming as an alternative to the correlation-based method for PIV images
without using a differential equation. Ruhnau et al. (2005) and Yuan, Schnorr &
Memin (2007) used the brightness constraint equation for PIV images. Realizing that
the brightness constraint equation is not an accurate model for fluid measurements,
Corpetti, Memin & Perez (2002) and Corpetti et al. (2006) proposed the integrated
continuity equation in the image plane as an alternative based on the continuity
equation of fluid in the three-dimensional object space under some assumptions.
The main assumption is that the radiance is proportional to an integral of the
fluid density across a measurement domain. This assumption is good only for light
transmittance through a fluid with a variable density (Wildes et al. 2000; Heas
et al. 2007), but it is not generally correct for many widely used flow visualizations.
Although the integrated continuity equation is currently used in satellite imagery, it
is not rigorously derived from the fundamental equations of fluid mechanics for a
range of applications, such that its rational foundation for flow measurements has
been often questioned (Corpetti et al. 2006; Cuzol, Hellier & Memin 2007; Heas et al.
2007). Nevertheless, experimental examination of the optical flow method based on
the integrated continuity equation for PIV measurements in a mixing layer and a
wake behind a circular cylinder has shown a good agreement with hot-wire probe
measurements in both the mean velocity profiles and the statistical quantities of
turbulence (Corpetti et al. 2006). This promising application is fortunately due to the
fact that the material derivative in the integrated continuity equation has the same
form as that in the physics-based optical flow equation derived in this paper, and
the boundary flux terms can be largely neglected for PIV. However, Corpetti et al.
(2006) did not give a mathematical definition and physical meaning of the optical
flow in their equation particularly for PIV. In their earlier work, Corpetti et al. (2002)
gave a definition of the optical flow as a fluid-density-weighted velocity that is correct
only for transmittance images but not for PIV images. Clearly, it is highly desirable
to provide a mathematical connection between the optical flow and fluid flow for
various flow visualizations, such that application of the optical flow method to global
quantitative flow diagnostics can be legitimized.

Interestingly, Su & Dahm (1996a, b) bypassed the projected motion in the image
plane and proposed a variational formulation directly based on the scalar trans-
port equation in the three-dimensional object space to determine three-dimensional
velocity fields from laser-induced fluorescence measurements of tempo-spatial scalar
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fields. Time-resolved measurements of volumetric scalar fields have been made in
practice by using a laser-scanning system and a high-speed photosensitive array
(Dahm, Su & Southerland 1992; Frederiksen, Dahm & Dowling 1997). Such
measurements are feasible only when a time interval between two successive scan
planes is sufficiently small that a three-dimensional data volume reconstructed from
a set of data planes can be considered to be frozen in time.

At this stage, the major problem in applying the optical flow method to fluid
mechanics measurement is that the connection between the optical flow and fluid
flow has not been established quantitatively. Once this problem is solved, the
optical flow method that as a differential approach is more appropriate for images
of continuous patterns will provide a useful extension complementary to existing
techniques like PIV. The objective of this work is to give a direct connection between
the optical flow and fluid flow for typical flow visualizations, including laser-sheet-
induced fluorescence, transmittance through transported passive scalar, schlieren,
shadowgraph and transmittance imaging in density-varying flows, transmittance and
scattering of particulate flows and laser-sheet visualization of particles in flows. First,
the object-space coordinate frame, perspective projection and image intensity are
briefly discussed. Next, the projected-motion equations are derived in Appendix A
based on projection of the transport equations or continuity equation in the three-
dimensional object space onto the image plane for typical flow visualizations. These
equations provide the relationship between the radiance projected to a camera and
the path-averaged velocity field weighted with a relevant field quantity. The projected-
motion equations for various flow visualizations have a generic mathematical form,
and then the physics-based optical flow equation is given. It is clearly indicated that
the optical flow is proportional to the path-averaged velocity of fluid or particles.
To calculate the optical flow, a variational formulation with a first-order smoothness
constraint is given, and the corresponding Euler–Lagrange equation is derived. An
error analysis is given to identify and assess the major error sources in optical flow
computations, such as the effects of the image intensity gradient and time interval.
To quantitatively evaluate the accuracy of the optical flow method and the main
results of the error analysis, simulations are conducted on synthetic grid images,
where a uniform flow over a vortex pair is imposed. Further simulations focus on
application of the optical flow method to particle images and direct comparisons with
the correlation-based methods. Finally, velocity measurements in a strongly excited
turbulent jet are conducted to compare the optical flow method with the correlation-
based method for PIV images. The proposed methodology of projecting relevant
governing equations onto the image plane is generally and naturally applicable to
other important image-based measurements; for example projection of the thin-oil-
film equation for luminescent oil has recently produced quantitative global skin
friction diagnostics for complex flows (Liu et al. 2008a, b).

2. Geometric and radiometric projections
The perspective projection from a fluid medium onto an image is illustrated in

figure 1. The perspective projection transformation between the three-dimensional
object-space coordinates and the image coordinates is usually given by the collinearity
equations (McGlone 1998; Faugeras & Luong 2001; Mikhail, Bethel & McGlone
2001; Liu 2004). As shown in figure 1, the orthogonal row vectors (m1, m2, m3) in
the rotational matrix in the collinearity conditions constitute a special object-space
coordinate frame located at the perspective centre associated with a camera/lens
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Figure 1. Projection from fluid flow onto the image plane.

system. The vectors m1 and m2 are the directional cosine vectors parallel to the
x1-axis and the x2-axis in the image coordinate system, respectively. The vector
m3 is normal to the image plane, directing the object along the optical axis. We
denote the object coordinates X = (X1, X2, X3) as the projections of the object-space
position vector from the perspective centre in this frame. The perspective projection
transformation in this frame is xβ − xβ,p − δxβ = λXβ (β = 1, 2), where x = (x1, x2) are
the image coordinates; the scaling factor λ= −f/X3 is a ratio between the principal
distance f and the coordinate along −m3; xβ,p denotes the principal point location
in the image plane; and δxβ are the lens distortion terms. The vectors (m1, m2, m3),
which are a function of the Euler rotational angles of a camera, can be determined
by geometric camera calibration (Tsai 1987; Liu et al. 2000; Fraser 2001; Gruen &
Huang 2001).

In the object-space frame (m1, m2, m3) associated with a camera, the image intensity
is proportional to the radiative flux projected onto the plane (X1, X2), i.e.

I (x, t) = c

∫
L(X1, X2, t; θ, ψ) cos θ dΩ, (1)

where L is the radiance from an emitting object to an imaging system (e.g. camera),
c is a coefficient related to the imaging system, and θ and ψ are the polar angle and
azimuthal angle defining the direction of the infinitesimal solid angle dΩ = sin θ dθ dψ

of the camera. In fact, integration over a wavelength band is applied in (1), which
is not explicitly expressed for brevity. The image coordinates x are related to the
object-space coordinates X through the perspective projection transformation.

When a camera is sufficiently far away from an emitting object that the solid angle
of the camera is small, the image intensity is I (x, t) = cL(X1, X2, t; θc, ψc) cos θc�Ω ,
where �Ω is the solid angle of the camera, and the polar angle θc and the azimuthal
angle ψc give the angular position of the camera. In particular, when the radiance is
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independent of the azimuthal angle, I (x, t) = c2πL(X1, X2, t; μc)μc�μc, where μc is
the directional cosine of the camera’s polar angle, and �μc is the directional cosine
difference of the polar angle defining the observing solid angle of the camera. The
scattering from small particles and the emission from luminescent molecules can be
considered to be independent of the azimuthal angle. In summary, the image intensity
is proportional to the radiance projected onto a camera with a fixed position and
viewing direction. Therefore, the relative radiance can be replaced by the relative
image intensity in the derivations of the projected-motion equations.

3. Generic projected-motion equation and optical flow equation
The detailed derivations of the projected-motion equations are presented in

Appendix A for typical flow visualizations such as laser-sheet-induced fluorescence,
transmittance through transported passive scalar, schlieren, shadowgraph and
transmittance imaging in density-varying flows, transmittance and scattering of
particulate flows and laser-sheet visualization of particles in flows. The projected-
motion equations for these different flow visualizations have a form typical of the
transport equation. Therefore, we deduce a generic form from these equations:

∂g

∂t
+ ∇12 · (g〈U12〉ψ ) = f (X1, X2, g), (2)

where g = g(I ) is a function of the normalized image intensity that is proportional to
the radiance received by a camera. The specific forms of g(I ) for the flow visualizations
are given in Appendix A. In (2), the path-averaged velocity weighted with a field
quantity ψ related to a visualizing medium is defined as

〈U12〉ψ =

∫ Γ2

Γ1

ψU12 dX3

∫ Γ2

Γ1

ψ dX3

, (3)

where U12 = (U1, U2) are the projected components onto the coordinate plane (X1, X2)
of the fluid or particle velocity U = (U1, U2, U3) in the object space frame (m1, m2, m3)
associated with a camera. Accordingly, ∇12 = (∂/∂X1, ∂/∂X2) in (2) is the gradient
operator ∇ projected on the plane (X1, X2). As shown in figure 1, the visualized flow
domain is confined by two control surfaces, X3 = Γ1(X1, X2) and X3 =Γ2(X1, X2), that
could be virtual or solid. In many cases, the planar control surfaces, X3 = Γ1 = const.
and X3 = Γ2 = const., are used. The field quantity ψ is the scalar concentration in
flows (e.g. dye), fluid density in density-varying flows or particle number per unit
total volume for particulate flows, as indicated in Appendix A. The introduction of
the path-averaged velocity is more than a convenient, unified mathematical treatment
for various flow visualizations. For example although researchers in PIV always
know that the measured velocity is a certain averaged velocity across a laser sheet,
a mathematical definition of the averaged velocity has never been clearly given in
a systematical way. A rational definition of the averaged velocity is provided by
(3), even though it may be arguable whether the definition is unique. When ψ is
approximately constant across a thin laser sheet, 〈U12〉ψ ≈ U12.

The term f (X1, X2, g) in (2) depends on a specific flow visualization technique used
in measurements (see Appendix A). For several visualizations like laser-sheet-induced
fluorescence images and laser-sheet-illuminated particle images,

f (X1, X2, g) = D∇2
12g + DcB + cn · (ψU)|Γ2

Γ1
, (4)
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where D is the diffusion coefficient; c is a coefficient for fluorescence, scalar absorption
or particle scattering/absorption; and B = −n · ∇ψ |Γ2

Γ1
− ∇12 · (ψ |Γ2

∇12Γ2 + ψ |Γ1
∇12Γ1)

is a boundary term that is related to ψ and its derivatives coupled with the derivatives
of the control surfaces. The third term on the right-hand side of (4) represents the
accumulation effect of the quantity ψ in the volume across the control surfaces. Note
that an additional term for the effect of the fluid density variation occurs in (A9) for
density-varying flows in Appendix A. These boundary terms for individual techniques
are discussed in Appendix A. For the planar control surfaces, all the terms related to
the derivatives of the control surfaces vanish. For the solid control surfaces (e.g. glass
windows), the zero-flux condition n · (ψU)|Γ2

Γ1
= 0 is imposed. For the virtual control

surfaces confining a laser sheet, the term n · (ψU)|Γ2

Γ1
represents a rate of accumulation

of ψ within a laser sheet. In planar PIV measurements, it is often neglected and
treated as an error source. In addition, for a laser sheet, the term n · ∇ψ |Γ2

Γ1
can be

neglected when ψ is constant or linear across the thin laser sheet. Therefore, for laser-
sheet visualization, a reasonable approximation is that all the boundary terms can
be neglected. For the process of light transmittance through a flow in an open space,
the virtual control surfaces can be placed sufficiently far away from the flow that
n · (ψU)|Γ2

Γ1
= 0 is satisfied. In the worst scenario in which these boundary terms cannot

be either neglected or evaluated, a solution to (2) for f =0 gives, at least, a first-order
approximation that may be good enough for some applications, where all the omitted
terms must be treated as the elemental error sources in an analysis of results. In this
case, although an accurate solution cannot be obtained, (2) still provides a useful
framework for a systematical uncertainty analysis because the specific forms of the
elemental error sources are given and their effects on optical flow computations can
be estimated.

The gradient operator and Laplace operator can be transformed and expressed
in the image coordinates by using the perspective projection transformation, i.e.
∂/∂Xβ = λ∂/∂xβ and ∂2/∂Xβ∂Xβ = λ2∂2/∂xβ∂xβ (where β = 1, 2). The velocity in the
image plane, which is referred as to the optical flow, is u =(u1, u2) = λ〈U12〉ψ . This
relation gives a clear physical meaning of the optical flow; that is the optical flow is
proportional to the path-averaged velocity of fluid or particles in flow visualizations.
Therefore, (2) can be written as the physics-based optical flow equation

∂g

∂t
+ ∇ · (gu) = f (x1, x2, g), (5)

where ∇ = ∂/∂xβ , f (x1, x2, g) = λ2D∇2g+DcB+ cn · (ψU)|Γ2

Γ1
and ∇2 = ∂2/∂xβ∂xβ . The

measured quantity g is also mapped onto the image plane.
It is necessary to compare (5) with the brightness constraint equation ∂g/∂t +

u · ∇g = 0 proposed by Horn & Schunck (1981). Clearly, only for ∇ · u =0 and f =0,
(5) has the same form as the Horn–Schunck optical flow equation. For laser sheet
visualization in a strictly two-dimensional incompressible flow (U3 = 0), if ψ is constant
across the laser sheet, ∇12 · 〈U12〉ψ = ∇12 · U12 = 0 and then ∇ · u = 0. However, in a

general case, ∇ · u �=0 because not only ∇12 · 〈U12〉ψ �= ∇12 · U12 but also ∇12 · U12 =
−∂U3/∂X3 �= 0.

4. Variational formulation
To determine the optical flow, a variational formulation with a smoothness

constraint has been proposed by Horn & Schunck (1981), which in fact is the first-
order form of Tikhonov’s formulation for ill-posed problems (Tikhonov & Arsenin
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1977). Corpetti et al. (2006) discussed the shortcomings of the first-order regularization
in flow measurements and suggested a regularization functional based on the gradients
of divergence and curl to preserve the spatial characteristics of divergence and vorticity
in flows. Use of this second-order div–curl (divergence and curl) regularization is
more plausible conceptually to preserve fine structures in turbulent flows. However,
the existing forms of regularization are not derived on the basis of the principles of
fluid mechanics. To develop physics-based constraints, a rational approach would be
to project the Navier–Stokes equations onto the image plane to provide a constraint
for optical flow computation. This will lead to a complicated, nonlinear constraint
that is worth further investigation. Here, the Horn–Schunck constraint is used mainly
due to its simplicity.

Given g and f , we define a functional

J (u) =

∫
A

[∂g/∂t + ∇ · (gu) − f ]2 dx1 dx2 + α

∫
A

(|∇u1|2 + |∇u2|2) dx1 dx2, (6)

where α is the Lagrange multiplier. To minimize J (u), we introduce an arbitrary
smooth function v = (v1, v2), compute dJ (u + pv)/dp|p=0, and using the Green
theorem where the Neumann condition ∂u/∂n= 0 is imposed on the image domain
boundary ∂A we obtain the Euler–Lagrange equation

g∇[∂g/∂t + ∇ · (gu) − f ] + α∇2u = 0. (7)

Surprisingly, for ∇ · u = 0 and f =0, (7) does not directly reduce to the Euler–Lagrange
equation given by Horn & Schunck (1981). To examine a connection with the original
variational formulation given by Horn & Schunck (1981), integrating (7) along a
closed contour C in the image plane yields∮

C

(g∇[gt + ∇ · (gu) − f ] + α∇2u) · dr = 0,

and further ∮
C

(−[gt + ∇ · (gu) − f ]∇g + α∇2u) · dr =0. (8)

Since the contour C is arbitrary, for ∇ · u = 0 and f = 0, (8) recovers the Euler–
Lagrange equation [gt + u · ∇g]∇g − α∇2u = 0 originally given by Horn & Schunck
(1981); but this reduction is not particularly straightforward.

A mathematical analysis of the variational formulation of the brightness constraint
equation has been given by Aubert, Deriche & Kornprobst (1999) and Weickert &
Schnorr (2001), and the convergence of the numerical solution of the corresponding
Euler–Lagrange equation has been proven by Mitiche & Mansouri (2004).
However, (5), the physics-based optical flow equation, and (7), the corresponding
Euler–Lagrange equation, are the generalized forms of those given by Horn &
Schunck (1981). Although an analysis of the functional formulation and numerical
solution of (7) is extremely worthwhile for further investigation, this non-trivial
mathematical problem is not within the scope of this paper. A discrete form of
(7) is given in Appendix B, and the linear system is solved by using Jacobi’s
blockwise iteration. The solution of Horn & Schunck’s equation is used as an initial
approximation for (7) for faster convergence. Note that a variational formulation
with the same first-order smoothness constraint was given by Su & Dahm (1996a, b)
directly for the scalar transport equation in the three-dimensional object space to
determine three-dimensional velocity fields when time-resolved three-dimensional
scalar fields are given. For typical flow visualizations in which the geometric and
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radiometric projections cannot be bypassed, however, the variational problem should
be formulated in the image plane based on the physics-based optical flow equation.

5. Error analysis
In order to examine the error propagation, the image intensity and optical flow are

decomposed into a basic solution and an error, i.e. g = go + �g and u = uo + �u,
where go and uo exactly satisfy (7), the Euler–Lagrange equation; �u is the resulting
error in the optical flow; and �g is a variation or difference in the image intensity in
measurements and numerical calculations. Substituting g = go + �g and u = uo + �u
into (7), neglecting small terms of higher order and assuming that the difference and
differential operators are exchangeable, we obtain an error propagation equation:

g∇[Dg + ∇g · (�u)] + α∇2(�u) = α(�g/g)∇2u, (9)

where

Dg =�(∂g/∂t) + �(∇g) · u + g�(∇ · u) + �g(∇ · u). (10)

The first and second terms in (10) are the numerical errors in calculating the temporal
and spatial derivatives of the image intensity, respectively. The third and fourth terms
are the variation in the divergence of the optical flow and the variation of the image
intensity, respectively. The right-hand term in (9) is an error associated with the image
intensity change in the regularization.

The elemental error sources in (9) are �(∂g/∂t), �(∇g), �(∇ · u) and �g.
Furthermore, the resulting error in the optical flow depends on the image intensity
gradient ∇g and the Lagrange multiplier α. To study how the elemental errors affect
�u for images that have the same intensity pattern but different intensity gradient, (9)
is normalized by a characteristic intensity gradient magnitude ‖∇g‖char such that the
normalized intensity gradient ‖∇g‖−1

char∇g largely remains the same in these images.
The norm, ‖∇g‖char , can be suitably defined depending on a specific application.
Therefore, (9) becomes

g∇
[
‖∇g‖−1

char Dg + ‖∇g‖−1
char ∇g · (�u)

]
+ α ‖∇g‖−1

char ∇2(�u) = α ‖∇g‖−1
char (�g/g)∇2u.

(11)

For a limiting case where the elemental errors �(∇g), �(∇ · u) and �g vanish, the
optical flow error �u is mainly produced by �(∂g/∂t). For the first-order time
difference, an estimate is �(∂g/∂t) ∼= −gtt�t/2, where gtt = ∂2g/∂t2 and �t is a time
interval between two consecutive images. In this case, (11) can be written as

g∇
[
− ‖∇g‖−1

char �tgtt/2 + ‖∇g‖−1
char ∇g · (�u)

]
+ α ‖∇g‖−1

char ∇2(�u) = 0. (12)

The term ‖∇g‖−1
char�tgtt that represents an elemental error in the time differentiation

is particularly interesting. Since �t cannot be zero and ‖∇g‖char cannot be infinitely
large, ‖∇g‖−1

char�t must be finite, i.e.

�t ‖∇g‖−1
char = δ, (13)

where δ is a small positive constant. Hence, according to (13), a finite optical flow
error, �u, always exists, which imposes an ultimate limit in optical flow computation.
Based on (13), for a given value of �t , a larger intensity gradient leads to a smaller
error in the optical flow. For images with a large intensity gradient, the requirement
for a small �t is less stringent. In contrast, for images with a smaller intensity gradient
magnitude, a sufficiently small �t is required to achieve a reasonable accuracy. The
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consequences drawn from the error analysis will be quantitatively examined through
simulations in § 6.

6. Simulations: flow over a vortex pair
In order to examine the algorithm and the error analysis, simulations are conducted

on synthetic grid images (480 × 640 pixels and 8 bits), where the intensity profile across
a grid line is Gaussian. The grid images simulate grid images tagged by laser-induced-
fluorescence for velocity measurements (Koochesfahani & Nocera 2007). An optical
flow field, which is generated by superposing an Oseen vortex pair and a uniform
flow, is imposed in the images. The two Oseen vortices are placed at (m/3, n/2) and
(2m/3, n/2) in an image, respectively, where m (480) and n (640) are the numbers of
rows and columns of the image. The circumferential velocity of an Oseen vortex is
given by uθ = (Γ/2πr)[1 − exp(−r2/r2

0 )], where the vortex strengths are Γ = ±7000
(pixel)2 s−1, and the vortex core radius is r0 = 15 pixels. The uniform flow velocity is
10 pixels s−1. The grid image deformed by the velocity field after a time step �t is
generated using a discretized form of the optical flow equation (5) for f (x1, x2, g) = 0.
Figure 2(a) shows a 40 × 40 grid image. A deformed image at �t = 0.02 s is generated
where the maximum displacement is about 1 pixel. Figure 3 shows the velocity vectors
and streamlines extracted from a pair of the grid images. The Lagrange multipliers
are 50 for the Horn–Schunck estimator as an initial estimation and 400 for the
present method. The Lagrange multiplier within a range of 200–2000 does not affect
the velocity profile except near the peak velocity. The extracted velocity profiles
across the vortex cores are shown in figure 4. The present method underestimates
the maximum velocity just outside the vortex cores, and the Horn–Schunck solution
is considerably lower in the outer region. Also, the Horn–Schunck solution exhibits
a small spatial variation that corresponds to the grid intensity gradient pattern for
the selected Lagrange multiplier of 50. When the Lagrange multiplier is larger, the
variation will be smoothed out. Since the Horn–Schunck solution is used as an
initial approximation, the selection of the Lagrange multiplier for the Horn–Schunck
estimator is not particularly critical here. Figure 5 is a map of the local error of the
x-component of velocity defined as |u1(i, j ) − u1,exa(i, j )|, where the subscript ‘exa’
denotes the exact velocity distribution. It is indicated that larger errors in the optical
flow occur around the vortex cores, particularly outside the vortex pair. The effect
of the grid pattern is visible. It is found that this map approximately corresponds
to a map of the elemental error �(∂g/∂t) ∼= −gtt�t/2, where gtt

∼= −∂/∂t[∇ · (gu)]
according to the optical flow equation.

To examine the effect of the intensity gradient magnitude of the grid pattern on the
total optical flow error, six grid images shown in figure 2 are generated by changing
the standard deviation of the Gaussian intensity distribution of a grid line. Here,
the characteristic intensity gradient magnitude in a grid image (m = 480, n= 640) is
defined as

‖∇g‖char = n−1

n∑
j=1

max
i∈[1,m−1]

|g(i + 1, j ) − g(i, j )|.

The characteristic intensity gradient magnitudes of these grid images are 27.3,
20, 16, 13, 7.8 and 6.5 counts/pixel, respectively. As indicated in figure 6, for
both the present method and the Horn–Schunck estimator, the total optical flow
errors ‖u1 − u1,exa‖ and ‖u2 − u2,exa‖ decrease and approach a constant as the
intensity gradient magnitude ‖∇g‖char increases for �t =0.02, where ‖uk − uk,exa‖ =
m−1n−1

∑m

i=1

∑n

j=1 |uk(i, j ) − uk,exa(i, j )|. This is consistent with the error analysis. The
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(a) (b)

(c) (d )

(e) ( f )

Figure 2. Grid images with different characteristic intensity gradient magnitudes: (a) 27.3;
(b) 20; (c) 16; (d) 13; (e) 7.8; and (f) 6.5 counts/pixel.

present method has a smaller optical flow error than the Horn–Schunck estimator
for a sufficiently large intensity gradient magnitude. As the gradient magnitude
decreases, the present method and the Horn–Schunck estimator approach the same
error. Figure 7 shows how the intensity gradient magnitude affects the extracted
x-component velocity profile across the vortex cores. In general, for an image with a
small intensity gradient magnitude, the optical flow method tends to underestimate
the velocity.

Furthermore, the error analysis indicates that the optical flow error increases
with the time interval between two consecutive images. Figure 8 indicates that the
total optical flow errors ‖u1 − u1,exa‖ and ‖u2 − u2,exa‖ increase as the time interval
�t increases for ‖∇g‖char = 20. There is an optimum �t at which the total optical
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Figure 3. (a) Velocity vectors and (b) streamlines extracted from the grid images (figure 2a).

flow error is minimized, which is about 0.01 s, and the corresponding maximum
displacement is about 0.5 pixels. For �t < 0.01 s, the error is increased particularly
near the saddle points, where the velocity is small. The effect of �t on the extracted
x-component velocity profile across the two vortex cores is shown in figure 9. The
total optical flow error depends on both ‖∇g‖char and �t . When a combined variable
‖∇g‖−1

char�t is used, it is found that all the error data for �t =0.01 − 0.1 s and
‖∇g‖char = 6.5 − 27.3 counts/pixel are roughly collapsed, as shown in figure 10, and
the error increases with ‖∇g‖−1

char�t in an approximately linear fashion within these
ranges, which is an observation consistent with the error analysis.

Ideally, the synthetic optical flow based on the Oseen vortices and uniform flow
satisfies the divergence-free condition (∇ · u = 0), and therefore the present method
and the Horn–Schunck estimator should produce the same results. However, the
computations just described show that the Horn–Schunck estimator has a larger error.
In this simulation, it is found that the first-order spatial difference approximation used
in generating the deformed grid images produces an artificial finite divergence of the
optical flow (∇ · u �=0) embedded in the images around the viscous cores of the
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Figure 4. Distribution of the x-component of velocity across the vortex cores extracted
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Figure 5. Map of the local optical flow error from the grid images.

Oseen vortices. The Horn–Schunck estimator that imposes ∇ · u = 0 does not take
into account this finite divergence associated with the numerical approximation, and
as a result it has a larger error in these regions.

The error analysis and simulations indicate that a greater error occurs in optical flow
computation, particularly in the regions where the velocity has a large change for
images with a lower image intensity gradient. To improve the accuracy of optical
flow computation, the intensity gradient in images can simply be enhanced by
rescaling the images. For example, the grid image (f ) in figure 2 is rescaled simply by
5[g − 0.98 min(g)], and the intensity gradient magnitude ‖∇g‖char is increased from
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Figure 7. Effect of the characteristic intensity gradient on a velocity profile extracted
from the grid images.

6.5 to 32.5. As a result, the total optical flow error ‖u1 − u1,exa‖ is reduced from 2.3
pixels s−1 to 1.7 pixels s−1.
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7. Problems for particle images
One question is whether the optical flow method is practically applicable to particle

images using the projected-motion equation for laser-sheet-illuminated particle images
given in Appendix A, § A.6. Particle images are often utilized in PIV measurements in
which particles are displaced between two consecutive images after a time step. When
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the displacements are so large that the corresponding particles in the two images are
totally separated, the optical flow method fails, since the time derivative ∂g/∂t cannot
be accurately calculated. In this case, the correlation-based method is more effective
and accurate for large displacements. In contrast, the optical flow method requires
such a small �t that the corresponding particles in the two consecutive images remain
in contact, and therefore ∂g/∂t can be calculated. To cope with large displacements
in PIV images, Corpetti et al. (2002, 2006) suggested application of an integrated
form of the optical flow equation over a time step rather than a differential form in
a variational formulation. Furthermore, a multi-resolution scheme based on a dyadic
image pyramid generated using a Gaussian filter was proposed by Ruhnau et al.
(2005) to successively reconstruct image motions from coarse scales to fine scales
for large displacements. Heas et al. (2007) combined an image correlation method
for large displacements and a variational optical flow method for refined and dense
estimation of displacements. This paper strictly focuses on (7), the generic differential
form of the Euler–Lagrange equation.

To examine the problems in application of the optical flow method for particle
images, low-density images with distinctly discrete particles and high-density particle
images are considered. Figure 11 shows an image with a relatively low density and the
corresponding Gaussian-filtered image. A velocity field of an Oseen-vortex pair and a
uniform flow is imposed in the images. For �t =0.02 s, the maximum displacement is
about 1 pixel. This displacement is still visible but much smaller than that in typical
PIV images. Even for these images, direct application of the optical flow algorithm
does not converge to a solution, since some particles are still too separated. To resolve
this problem, a Gaussian filter is applied to the particle images before using the optical
flow algorithm. As shown in figure 11(b), suitable Gaussian smoothing makes the
distinct particles isotropically diffused and the separated particles connected, whereas
the displacements remain unchanged. A more diffused image is obtained by applying
a Gaussian filter (15 × 15 pixels mask size and 6 pixels standard deviation) to an
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(a)

(b)

Figure 11. (a) Image with distinct particles and (b) filtered particle image.

original particle image, while another less diffused image is similarly generated by a
Gaussian filter (5 × 5 pixels mask size and 2 pixels standard deviation). The average
of the two diffused images gives a composite filtered particle image in figure 11(b).
Application of the optical flow algorithm to the filtered images leads to a converged
solution. Figure 12 shows the velocity vectors and streamlines extracted from the
diffused particle images for �t = 0.02 s. A map of the local error of the x-component
of the optical flow is shown in figure 13, which is similar to that for the grid images.
The velocity profiles across the two vortex cores for three time intervals are shown in
figure 14. The extracted profile is closer to the exact profile for �t = 0.005 s. However,
it is found that as �t decreases further the optical flow error actually increases,
which is consistent with the simulation for the grid images. It is interesting to see
how well the correlation-based method works for the non-filtered particle images
shown in figure 11(a). The velocity profiles across the two vortex cores are shown
in figure 15, and are extracted from the non-filtered particle images using the TSI
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Figure 12. (a) Velocity vectors and (b) streamlines extracted from the filtered particle images.

Insight5 PIV software (64 × 64 pixels window size). The velocity magnitudes given
by all the correlation algorithms are considerably smaller, which is not unexpected,
since the particle images with displacements less than 1 pixel are not suitable for
correlation-based methods. In addition, interrogation windows of 64 × 64 pixels tend
to smooth out the sharp velocity change near the vortex cores.

High-density particle images, as shown in figure 16, are used for an additional test.
These images can be considered as images of almost continuous random patterns with
strong spike noise. Again, direct application of the optical flow algorithm to these
high-density images fails due to the spatial spike noise. The Gaussian smoothing
(5 × 5 pixels mask size and 2 pixels standard deviation) generates filtered particle
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Figure 14. Velocity profiles extracted from the filtered particle images for different time
intervals.

images to remove high-frequency components, as shown in figure 16(b). The velocity
profiles across the two vortex cores extracted from the filtered high-density particle
images are shown in figure 17 for three time intervals. Although the extracted profiles
are consistent with the exact profile, there is a considerable systematical error that is
only slightly decreased for a smaller �t . This systematical error is mainly caused by a
relatively small intensity gradient that is further reduced by the Gaussian smoothing.
Clearly, there is a tradeoff between the Gaussian smoothing for obtaining a converged



Fluid flow and optical flow 271

Exact profile across two vortex cores
PIV (FFT, TSI insight)
PIV (Direct correlation, TSI insight)
PIV (Hart correlation, TSI insight)

100

80

60

40

20

0

–20

–40

–60
–0.5 0 0.5

x-
co

m
po

ne
nt

 o
f 

 v
el

oc
it

y 
(p

ix
el

s 
s–

1 )

Normalized y-coordinate

Figure 15. Velocity profiles extracted from the non-filtered particle images using the TSI
Insight5 PIV software for a time interval of 0.02 s.

solution and the error associated with the reduction of the intensity gradient due to
the smoothing. As indicated in figure 18, the correlation-based methods perform
poorly not only because the displacements are so small (less than 1 pixel) but also
because these images are almost continuous.

The above experiments indicate that the optical flow method is applicable to
suitably filtered particle images when �t is sufficiently small that ∂g/∂t can be
accurately calculated. However, the Gaussian smoothing leads to a reduction of
the local intensity gradient and therefore an increase of the optical flow error. The
optical flow method prefers images with small displacements and images of nearly
continuous patterns for which the correlation-based method is not accurate. However,
direct application of the optical flow method without using additional procedures like
a multi-resolution scheme (Ruhnau et al. 2005) may fail in the case in which particles
in two consecutive images have large displacements. In this case, a combination of
the correlation-based method and the optical flow method may be more promising.

The Gaussian filtering is used in PIV images before applying the optical flow
algorithm to diffuse distinct particles isotropically and make the corresponding
particles connected in a pair of images. In addition, Gaussian filtering is required
to remove some high-frequency noise in PIV images. Here an assumption is that
the Gaussian filtering does not change motion information contained in these
images. After the Gaussian filtering, an image g is decomposed into two parts, i.e.
g = A(g)+�g, where A(g) is a filtered image, and �g is the remaining part. From the
filtered image A(g), the optical flow u is determined. Similarly, the remaining optical
flow �u can be obtained from the image �g, which in a certain sense represents
the level of noise in optical flow computation. For dealing with large displacements,
the Gaussian filtering and sub-sampling operations have been recursively applied by
Ruhnau et al. (2005) to construct an image pyramid. A coarse optical flow field is
obtained, using the optical flow method, from low spatial frequency images. Then
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(a)

(b)

Figure 16. (a) High-density particle image and (b) filtered high-density particle image.

a correction scheme based on the previous optical flow yields a refined optical flow
estimation. This multi-resolution process is repeated at scales that keep getting finer
until the original image resolution is recovered.

8. Velocity measurements in a strongly excited turbulent jet
In order to experimentally examine the optical flow method, measurements of

velocity fields in a strongly excited turbulent jet were conducted by using a PIV
system (TSI), in which the density of seeded particles was suitably high for both the
optical flow method and the correlation method. Although PIV images are not the
best choice for demonstrating the potential capability of the optical flow method, as
pointed out before, PIV is the maturest global velocimetry available for one-to-one
comparisons with the optical flow method. Figure 19 is a diagram of a jet facility. The
facility consists of an oil particle generator (atomizer) and two pressure chambers. Air
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Figure 17. Velocity profiles extracted from the filtered high-density particle images for
different time intervals.
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Figure 18. Velocity profiles extracted from the original, non-filtered high-density particle
images, using the TSI Insight5 PIV software for a time interval of 0.02 s.

from a compressed air line (160 p.s.i.) enters a TSI Model 9307 oil particle generator
at a regulated air pressure. Olive oil droplets generated from the atomizer have a
distribution with a mean diameter of about 1 micron. Leaving the atomizer, the
oil-seeded airflow moves into the first pressure chamber (mixing chamber) through a
3/8 in. clear vinyl tube, where it is then mixed with regulated compressed air. Adding
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Figure 19. Jet and PIV setup.

regulated compressed air allows the jet velocity to be controlled by changing the
pressure inside the mixing chamber. The mixing chamber is a 445 mm long capped
tube with a 100 mm diameter. The mixed flow exits the top of the mixing chamber
and enters the top of the second pressure chamber traveling through a 3/8-in. clear
vinyl tube.

Oil film creation inside the pressure chambers and the connecting vinyl tubing
often lead to oil pooling, and once a critical point is reached, a large droplet detaches
and is swept along the flow and into the jet. To deal with this problem, two features
are added into the second pressure chamber. As the oil-seeded airflow enters the top
of the chamber, a set of two baffle plates cause the entering air to make several
rapid turns, changing the flow direction rapidly. The larger oil droplets’ inertia is so
large that they no longer follow the flow and are deposited upon the baffle plates
and chamber walls. Exiting the baffle plates the flow proceeds to the bottom of the
chamber and the oil collection pool. The jet nozzle is a tubular pipe with an inner
diameter of 9.5 mm that extrudes upwards into the pressure chamber for 50 mm.
With a diameter of 50 mm for the second chamber, a pooling area is created at the
bottom of the chamber for collection of any oil. A pressure tap at the middle of the
chamber allows measurement of the differential pressure between the chamber and
the atmosphere with a digital manometer. To excite the jet, the rear end of the second
chamber is connected to an acoustic resonance box (18 × 18 × 13.5 in) driven by a
200 W loudspeaker through a 1.5 in. diameter Tygon tube.

The mean velocity at the jet exit without excitation was 4.8 m s−1, and the Reynolds
number based on the jet exit diameter was 3020. Without excitation, the exit turbulent
intensities at the centre and the shear layer were 5 % and 13.5 %, respectively. A broad
power spectrum of velocity fluctuation measured using a hot-wire probe at the exit
was observed. The natural free jet without excitation was already turbulent due to
the complicated internal structures of the chambers. Then, strong acoustic excitation
with a square waveform at 15 Hz was introduced by a loudspeaker powered by
an amplifier fed with a square-wave voltage provided by a signal generator. The
normalized root mean square (RMS) variation of velocity fluctuation by the mean
velocity of the excited jet at the exit was 80 %, indicating that the excited jet was
highly unsteady. The distribution of the excitation level at the exit was flat, indicating
a planar-wave excitation across the jet.

The axisymmetrical plane of the jet was illuminated by a 2-mm thick laser sheet
generated by a Big Sky laser (CFR190) at 15 Hz, and the interval between two
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Figure 20. (a) Typical PIV image of a strongly excited turbulent jet at T/4; (b) velocity
vectors given by the optical flow method; and (c) velocity vectors given by the TSI Insight5
PIV software, where T = 1/15 s.

pulses was 10 μs. The measuring area was imaged by a PIV camera (TSI PIVCAM
10–30, Model 630046) with an 85 mm lens. Since both the laser and camera were
operated at 15 Hz, laser illumination and image acquisition were approximately in
phase. Therefore, double-pulsed, snapshot images were obtained in different phases
in a period of excitation. Figure 20(a) shows a typical PIV image at T/4, which
is selected from 150 pairs of images in a period of T = 1/15 s. The PIV images
visualized a vortex ring generated by acoustic excitation and its evolution. To obtain
velocity fields, the PIV images were processed using the optical flow algorithm with a
Gaussian filter (5 × 5 pixels mask size and 2 pixels standard deviation) and the TSI
Insight5 PIV software (FFT, 32 × 32 pixels window size). The TSI Insight software
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is a typical multi-pass adaptive correlation algorithm that has been comprehensively
compared with other PIV algorithms and has had its accuracy documented (Stanislas
et al. 2005).

Figures 20(b) and 20(c) show the snapshot velocity fields obtained using the optical
flow method and the TSI Insight5 at T/4, respectively. The impulse velocity field
associated with a vortex ring is also shown. Although the results obtained by the
optical flow method are consistent with those given by the correlation method in
figure 20, direct comparison of velocity profiles at the same location and same phase
is required for quantitative validation. Figure 21 shows the profiles of the x-component
of velocity across the jet at different streamwise locations for five phases. It is indicated
that the optical flow method and the correlation method (TSI Insight5) give overall
consistent results. The relative error ‖u1,OP − u1,PIV ‖/max(u1,OP ) between the results
obtained by the optical flow method and the correlation-based method is 3 % in these
cases. Near the outer shear layer of the jet, the optical flow method reveals reversed
flow induced by a strong vortex ring at some locations. However, this feature is not
shown in the profiles given by the TSI Insight5.

Further comparison between the optical flow method and correlation method is
made for a temporal variation of the x-component of velocity. Figure 22 shows the
temporal variations of the x-component of velocity at (x/D, y/D) = (1.04, 0) and
(x/D, y/D) = (1.04, −0.48), where D = 9.5 mm is the diameter of the jet exit. At the
jet centreline (y/D = 0), the optical flow method gives a result consistent with the
correlation method. Near the shear layer (y/D = −0.48), although the overall shapes
and magnitudes of the velocity profiles given by the two methods are close, a large
fluctuation (noise) appears in the result given by the TSI Insight5 software.

9. Conclusions
Based on projection of the transport equations or continuity equation onto

the image plane, the projected-motion equations are derived for various flow
visualizations, and a generic form of these equations is deduced. Further, the
physics-based optical flow equation is given, where the optical flow is proportional
to the path-averaged velocity of fluid or particles weighted with a relevant field
quantity like dye concentration, fluid density and particle concentration. The optical
flow is calculated by using the variational method. This work provides a rational
foundation for application of the optical flow method to various flow visualization
images, including laser-sheet-induced fluorescence images, transmittance images of
passive scalar transport, schlieren, shadowgraph and transmittance images of density-
varying flows, transmittance and scattering images of particulate flows and laser-
sheet-illuminated particle images. The error analysis indicates that the uncertainty
of optical flow computation is inversely proportional to the image intensity gradient
and directly proportional to the time interval between two successive images. The
effects of the image intensity gradient and the time interval on the accuracy of
optical flow computation are quantitatively investigated through simulations on
synthetic grid images. In principle, the optical flow method is more suitable for
images of continuous patterns, providing high-resolution velocity fields. For PIV
images, however, it is applicable when particles are sufficiently dense and/or the
time interval is small enough and when PIV images are pre-processed by suitable
Gaussian filtering. Results consistent with the correlation-based method are obtained
by applying the optical flow method to PIV images acquired in a strongly excited
turbulent jet. The optical flow method should be further quantitatively examined
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Figure 21. Profiles of the x-component of velocity in a strongly excited turbulent jet obtained
by using the optical flow method (lines) and TSI Insight5 PIV software (crosses) at five phases:
(a) 0T ; (b) T/8; (c) T/4; (d) T/2; and (e) 3T/4, where T = 1/15 s.

for various flow visualization images like schlieren and shadowgraph images. The
proposed methodology of projecting relevant governing equations onto the image
plane is also useful for other image-based measurements.
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their detailed and constructive comments.
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Appendix A. Derivations of projected-motion equations
A.1. Laser-sheet-induced fluorescence image

A.1.1. Flow with constant fluid density

A thin laser sheet is often used to illuminate the fluorescent dye seeded in flows
for visualization. The fluorescent emission at a certain wavelength is proportional to
the dye density, when the dye concentration is sufficiently low. Given a laser-sheet
radiance distribution L0(X) in a three-dimensional space, for a thin laser layer in
which the excited dye is optically thin, the fluorescent radiance received by a camera
is the integral

L(X1, X2, t) = c

∫ ∞

−∞
L0(X)ψ(X, t) dX3 ≈ cL0(X1, X2, X3,m)

∫ Γ2

Γ1

ψ(X, t) dX3, (A 1)
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where ψ(X, t) is the density of the excited molecules; c is a constant; and X3,m is
a certain value of X3 in the laser sheet according to the mean value theorem for
integration. Since the distribution of L0(X) across the laser sheet along X3 rapidly
decays from the laser sheet centre (of which a near-Gaussian distribution can be
considered an approximate model), two virtual control surfaces X3 = Γ1(X1, X2) and
X3 = Γ2(X1, X2) are placed sufficiently far away from the laser sheet centre that the
integral approximation in (A 1) is good. Here, L0(X1, X2, X3,m) is interpreted as a mean
value of the laser-sheet radiance distribution along X3, and it is simply denoted by
L0. The laser-sheet radiance for excitation is not uniform due to laser-sheet spreading
and dye absorption, and therefore L0 implicitly depends on the dye density. For a
heavily dyed fluid, intensity attenuation in the laser sheet can be measured a priori
(Dahm & Dimotakis 1987, 1990), and thus L0 is considered a known distribution in
the plane (X1, X2).

The transport equation for the concentration of the scalar ψ is

∂ψ

∂t
+ U · ∇ψ = D∇2ψ, (A 2)

where U = (U1, U2, U3) is the fluid velocity, and D is a diffusion coefficient. Most
equations in the following sections are expressed in the frame (m1, m2, m3) associated
with a camera, and the differential operators are given in the object-space coordinates
X = (X1, X2, X3). For a flow with a constant fluid density (such as liquid flows with a
constant temperature and incompressible aerodynamic flow), where U · ∇ψ = ∇ · (ψU),
differentiating (A 1) with respect to time and using (A 2), we have

∂L

∂t
= cL0

∫ Γ2

Γ1

[−∇ · (ψU) + D∇2ψ] dX3. (A 3)

Furthermore, we have the following relations:

∫ Γ2

Γ1

∇ · (ψU) dX3 = ∇12 ·
∫ Γ2

Γ1

ψU12 dX3 − n · (ψU)|Γ2

Γ1
, (A 4)

and ∫ Γ2

Γ1

∂2ψ

∂Xα∂Xα

dX3 =
∂2

∂Xβ∂Xβ

∫ Γ2

Γ1

ψ dX3 + B (β = 1, 2; α = 1, 2, 3) (A 5)

where ∇12 = (∂/∂X1, ∂/∂X2) is the gradient operator ∇ projected on the coordinate
plane (X1, X2); U12 = (U1, U2) is the fluid velocity vector projected onto the plane
(X1, X2); and n =(∂X3/∂X1, ∂X3/∂X2,−1) is the normal vector of the control surface.
The boundary term B in (A 5) is related to ψ and its derivatives on the control surfaces
and the gradients of the control surfaces, i.e.

B = −n · ∇ψ |Γ2

Γ1
− ∇12 · (ψ |Γ2

∇12Γ2 + ψ |Γ1
∇12Γ1).

We introduce the path-averaged velocity weighted with the dye concentration ψ:

〈U12〉ψ =

∫ Γ2

Γ1

ψU12 dX3

∫ Γ2

Γ1

ψ dX3

. (A 6)
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Substitution of (A 1), (A 4), (A 5) and (A 6) into (A 3) yields a projected-motion
equation:

∂g

∂t
+ ∇12 · (g〈U12〉ψ ) = D∇2

12g + DcB + cn · (ψU)|Γ2

Γ1
, (A 7)

where g = L/L0, and ∇2
12 = ∂2/∂Xβ∂Xβ (β = 1, 2) is the Laplace operator on the

projection plane (X1, X2). The boundary terms in (A 7) effectively serve as source
terms. The last term on the right-hand side of (A 7) represents the accumulation effect
of the dye in the illuminated volume moving across the control surfaces. The quantity
g can be expressed as g = L/L0 = I/I0, since the image intensity is proportional to
the projected radiance.

For the planar control surfaces, X3 = Γ1 = const. and X3 = Γ2 = const., the gradients
∇12Γ1 and ∇12Γ2 in the boundary term B are zero. In addition, for a laser sheet,
n · ∇ψ |Γ2

Γ1
can be neglected when ψ is constant or linear across the thin laser

sheet. Therefore, for laser-sheet visualization, a reasonable approximation is that
the boundary term B vanishes. The flux term n · (ψU )|Γ2

Γ1
could be zero under certain

conditions: At the virtual control surfaces, (a) the flow is parallel to the planar
control surfaces (or the laser sheet); (b) the dye concentration is zero; (c) the velocity
is zero; and (d) the incoming and outgoing fluxes into a laser sheet are equal. (The
condition (d) is usually assumed in laser-sheet visualization.) Under these conditions,
the boundary terms, i.e. the last two terms in the right-hand side of (A 7), can be
neglected.

A.1.2. Flow with variable fluid density

For a flow with a variable fluid density (such as a compressible aerodynamic flow
and a buoyancy-driven flow), where the continuity equation is ∂ρ/∂t + ∇ · (ρU) = 0,
we have ∇ · U = −ρ−1(∂ρ/∂t + U · ∇ρ) and U · ∇ψ = ∇ · (ψU) + ψ(∂/∂t + U · ∇) ln ρ.
Further, we have

∫ Γ2

Γ1

U · ∇ψ dX3 = c−1∇12 · [(L/L0)〈U12〉ψ ] − n · (ψU)|Γ2

Γ1

+ c−1(L/L0)F (K, ρ, 〈U12〉ψ, 〈U3〉ψ ).

The function F is defined as

F (K, ρ, 〈U12〉ψ, 〈U3〉ψ ) = H −1C1∂K/∂t + H −1C2〈U12〉ψ · (∇12K − ln ρ|Γ2
∇12Γ2

+ ln ρ|Γ1
∇12Γ1) + H −1C3〈U3〉ψ (ln ρ|Γ2

− ln ρ|Γ1
)

where H is the width between the control surfaces (e.g. the laser sheet thickness); the

quantity K is K =
∫ Γ2

Γ1
ln ρ dX3, and the correlation coefficients are defined as

C1 =

H

∫ Γ2

Γ1

ψ∂ ln ρ/∂t dX3

∫ Γ2

Γ1

ψdX3

∫ Γ2

Γ1

∂ ln ρ/∂t dX3

,

C2 =

H

∫ Γ2

Γ1

ψU12 · ∇12 ln ρ dX3

∫ Γ2

Γ1

ψU12 dX3 ·
∫ Γ2

Γ1

∇12 ln ρ dX3

,
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C3 =

H

∫ Γ2

Γ1

ψU3∂ ln ρ/∂X3 dX3

∫ Γ2

Γ1

ψU3 dX3

∫ Γ2

Γ1

∂ ln ρ/∂X3 dX3

.

Using (A 5) and (A 2), we obtain a projected-motion equation for a flow with a
variable fluid density:

∂g

∂t
+ ∇12 · (g〈U12〉ψ ) = D∇2

12g + DcB + cn · (ψU)|Γ2

Γ1
− gF (K, ρ, 〈U12〉ψ, 〈U3〉ψ ), (A 8)

where g = L/L0 = I/I0. When the control surfaces are X3 = Γ1 = const. and X3 = Γ2 =
const., the image plane is parallel to the laser sheet. Furthermore, the laser sheet is so
thin that the fluid density ρ is approximately the same between Γ1 and Γ2, and thus
K ≈ H ln ρ. In this case, (A8) becomes

∂g

∂t
+ ∇12 · (g〈U12〉ψ ) = D∇2

12g + DcB + cn · (ψU)|Γ2

Γ1

− ρ−1g

(
C1

∂ρ

∂t
+ C2〈U12〉ψ · ∇12ρ

)
. (A 9)

The effect of the fluid density variation on the projected-motion equation is clearly
seen in (A 8) and (A 9), and for a flow with a constant fluid density (A 8) and (A 9)
naturally reduce to (A 7).

A.2. Transmittance image through passive scalar

When a light ray transmits through passive scalar, the intensity of light at a certain
wavelength is attenuated due to absorption and scattering by the scalar. It is assumed
that absorption and scattering by fluid are negligible, and the scalar does not change
the density of fluid. The radiance reaching a camera through the scalar is

L(X1, X2, t) =L0(X1, X2) exp

(
−

∫ Γ2

Γ1

β(X, t) dX3

)
, (A 10)

where β is the extinction coefficient, and L0 is the incident radiance. We
consider passive scalar confined by the control surfaces X3 = Γ1(X1, X2) and X3 =
Γ2(X1, X2) outside which the scalar concentration is zero. The extinction coefficient
is proportional to the scalar concentration for sufficiently weak concentration, i.e.
β = εψ , where ε is a coefficient. Since − ln(L/L0) from (A 10) has the same form as
(A 1), we directly have

∂g

∂t
+ ∇12 · (g〈U12〉ψ ) = D∇2

12g − DεB − εn · (ψU)|Γ2

Γ1
, (A 11)

where g = ln(L/L0) = ln(I/I0). When the scalar concentration is small, the radiance
can be written as L = L0 − �L, where �L is the difference between the incident
radiance and detected radiance due to the absorption of a light through the scalar.
For �L/L0 � 1 and �L > 0, so that ln(L/L0) ≈ −�L/L0 = −�I/I0, (A 11) becomes

∂g

∂t
+ ∇12 · (g〈U12〉ψ ) = D∇2

12g + DεB + εn · (ψU)|Γ2

Γ1
, (A 12)

where g =�L/L0 = �I/I0, and �I and I0 are the image intensity responses to �L

and L0, respectively. For the solid control surfaces where n · (ψU)|Γ2

Γ1
= 0 or the virtual

control surfaces that are placed sufficiently far away that U =0 and ψ =0, the
boundary terms in (A 11) and (A 12) are zero.
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A.3. Images of density-varying flow

Settles (2001) briefly discussed schlieren image correlation velocimetry. More details of
image correlation velocimetry for the determination of a velocity field of continuous
patterns were given by Tokumaru & Dimotakis (1995). The projected-motion
equations in this paper are derived for the optical flow method to extract velocity
fields from schlieren, shadowgraph and transmittance images of density-varying flows.

A.3.1. Schlieren image

The schlieren technique has been widely used for flow visualization of density-
varying flows such as compressible aerodynamic flows and natural convection flows.
The coordinate system is set at the centre of the test section, in which X2 is in the
mean flow direction, and X3 is in the direction normal to the window walls along
a light ray. The control surfaces are given by X3 =Γ1(X1, X2) and X3 =Γ2(X1, X2)
through which a light ray passes. The image intensity I in a schlieren image depends
on the gradient of the fluid density ρ (Goldstein & Kuehn 1996) by the following
relation:

I − IK

IK

= C

∫ Γ2

Γ1

∂ρ

∂X2

dX3, (A 13)

where IK is the reference image intensity with the knife edge inserted in the focal
plane when no variation of the density exists in the test section, and C is a coefficient
related to the setting of a schlieren system. The knife edge is set to be normal to the
gradient of the fluid density ∂ρ/∂X2.

Taking partial differentiation with respect to time in (A 13) and using the continuity
equation ∂ρ/∂t + ∇ · (ρU) = 0, we have

−∂(I/IK − 1)

∂t
= C

∫ Γ2

Γ1

∂

∂X2

[∇ · (ρU)] dX3. (A 14)

The fundamental theory of calculus leads to

∫ Γ2

Γ1

∂

∂X2

[∇ · (ρU)] dX3 =
∂

∂X2

∫ Γ2

Γ1

∇ · (ρU) dX3 − ∇ · (ρU)
∂X3

∂X2

∣∣∣∣
X3=Γ2

X3=Γ1

.

The integral in the first term on the right-hand side of the above relation can be
decomposed into

∫ Γ2

Γ1

∇ · (ρU) dX3 = ∇12 ·
∫ Γ2

Γ1

ρU12 dX3 − n · (ρU)|Γ2

Γ1
.

From (A 13), we have

I − IK

CIK

=
∂

∂X2

∫ Γ2

Γ1

ρ dX3 − ρ
∂X3

∂X2

∣∣∣∣
X3=Γ2

X3=Γ1

,

and further

∫ Γ2

Γ1

ρ dX3 =
1

C

∫ X2

X20

(I/IK − 1) dX2 +

∫ X2

X20

ρ
∂X3

∂X2

∣∣∣∣
X3=Γ2

X3=Γ1

dX2 +

∫ Γ2

Γ1

ρ dX3|X2=X20
,
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where X20 is a reference position in X2. The path-averaged velocity weighted with the
fluid density ρ can be defined as

〈U12〉ρ =

∫ Γ2

Γ1

ρU12 dX3

∫ Γ2

Γ1

ρ dX3

. (A 15)

Substituting the above relations into (A 14), we obtain a projected-motion equation

∂g

∂t
+ ∇12 · (g〈U12〉ρ) = f, (A 16)

where

g =

∫ X2

X20

(I/IK − 1) dX2 + C

∫ Γ2

Γ1

ρ dX3|X2=X20
,

and

f = C
∂

∂t

∫ Γ2

Γ1

ρ dX3

∣∣∣∣
X2=X20

+ [∇12 · (g〈U12〉ρ)]X2=X20
+ C

[
n · (ρU)|Γ2

Γ1

]X2

X2=X20
.

The flux term in f vanishes for solid planar control surfaces (like glass windows),
and X3 =Γ1 = const. and X3 = Γ2 = const. where the no-flux condition n · (ρU) = 0 is
imposed. In some applications such as schlieren imaging of buoyancy-driven flow
in an open space and focused schlieren imaging, the virtual control surfaces can be
placed sufficiently far away from a measurement domain that either the local velocity
vanishes (U = 0) or the local velocity is parallel to the control surfaces [n · (ρU) = 0].
In this case, the flux term also vanishes. The other terms are related to the values of
the flow properties at the reference position X2 = X20. When the reference position is
in the incoming free stream in which the fluid density and velocity are steady and
spatially uniform, these terms can be neglected.

A.3.2. Shadowgraph image

In contrast to a schlieren image, the image intensity I in a shadowgraph image
depends on the second-order derivative of the fluid density ρ (Goldstein & Kuehn
1996), i.e.

I − IT

IT

= C

∫ Γ2

Γ1

∇2
12ρ dX3, (A 17)

where IT is the initial image intensity; C is a coefficient related to the setting of
a shadowgraph system; and ∇2

12 = ∂2/∂X2
1 + ∂2/∂X2

2. When the control surfaces are
planar, i.e. X3 =Γ1 = const. and X3 = Γ2 = const., taking partial differentiation with
respect to time in (A 17) and using the continuity equation ∂ρ/∂t + ∇ · (ρU) = 0, we
have

− 1

C

∂(I/IT − 1)

∂t
= ∇2

12

[
∇12 ·

∫ Γ2

Γ1

ρU12 dX3

]
. (A 18)

From (A 17), we have a Poisson equation for the integral of the fluid density:

∇2
12

∫ Γ2

Γ1

ρ dX3 = C−1(I/IT − 1).

The integral of the fluid density can be obtained by solving the Poisson equation
∇2

12g = I/IT −1 with suitable boundary conditions. Thus, a projected-motion equation
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is symbolically expressed as

∂g

∂t
+ ∇12 · (g〈U12〉ρ) = Cn · (ρU)|Γ2

Γ1
, (A 19)

where g = ∇−2
12 (I/IT − 1) is a symbolic solution of the Poisson equation, and ∇−2

12 is
the inverse operator of the Poisson equation. The actual form of the projected-motion
equation is more complicated than the symbolic one, since the boundary conditions
for the Poisson equation should be naturally and explicitly incorporated into the
equation.

A.3.3. Transmittance image

For certain imaging systems like a collimated monochromatic X-ray system, the
image intensity in a transmittance image depends on the fluid density ρ (Wildes et al.
2000):

I − IT

IT

= C

∫ Γ2

Γ1

ρ dX3, (A 20)

where IT is the initial image intensity, and C is a coefficient related to the setting
of an imaging system. For the planar control surfaces, using the technique described
above, we obtain

∂g

∂t
+ ∇12 · (g〈U12〉ρ) = Cn · (ρU)|Γ2

Γ1
, (A 21)

where g = I/IT − 1.

A.4. Transmittance image through scattering particulate flow

There are particulate flows in nature and engineering systems such as pyroclastic
flows at volcanic eruptions, cloud motion and smoke motion visualizing air flows in
wind tunnels. The disperse phase number equation (Brennen 2005) for particulate
flow is:

∂N

∂t
+ ∇ · (NU) = 0, (A 22)

where U =(U1, U2, U3) is the particle velocity. The number of particles per unit total
volume, N , is given by the particle distribution function np(a) of particles of diameter
a, i.e.

N =

∫ ∞

0

np(a) da = 〈np〉a.

The operator 〈∗〉a denotes an integral over the entire range of particle sizes.
The light transmittance/scattering through particles depends on the particle

distribution. There are three coefficients that generally describe particle scattering
and absorption properties. The particle scattering coefficient is defined as

σ =

∫ ∞

0

Cscanp(a) da = wsca〈Csca〉aN,

where Csca is the scattering cross-section, and wsca is a correlation coefficient. Similarly,
the absorption and extinction coefficients of particles are respectively given by

κ =

∫ ∞

0

Cabsnp(a) da = wabs〈Cabs〉aN,
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and

β =

∫ ∞

0

Cextnp(a) da = wext〈Cext〉aN,

where Cabs and Cext are the absorption and extinction cross-sections, respectively, and
wabs and wext are the corresponding correlation coefficients.

In the transmittance of a light ray through scattering particulate flow, a portion
of light transmits through the medium, and some light is absorbed and scattered by
particles. For a one-dimensional plane medium, the equation of radiative transfer for
the radiance L in the particulate medium along a ray defined by the unit vector s (or
polar angle θ) (Pomraning 1973; Modest 1993) is:

dL

dτ
+ L = S(τ, s), (A 23)

where the source function S(τ, s) is

S(τ, s) = (1 − ω)Lb +
ω

4π

∫
4π

L(si)Φ(si , s) dΩi,

and the optical coordinate along a ray is τ =
∫ s

0
β ds.

The integral over the solid angle of 4π in this relation represents the gain of
radiative energy by the beam due to the radiation incident on the particles from all
directions in the spherical space that is scattered by the particles. The scattering phase
function Φ(si , s), which gives a directional distribution, represents the probability
that the incident radiation along the direction si will be scattered into a certain other
direction s. Here Lb is the blackbody emission intensity. The single scattering albedo
is

ω =
σ

β
=

σ

σ + κ
=

wsca〈Csca〉a

wext〈Cext〉a

,

which is independent of the number of particles.
The formal solution of (A 23) gives an integral equation:

L(τ ) = L0 exp(−τ ) +

∫ τ

0

S(τ ′, s) exp[−(τ − τ ′)] dτ ′. (A 24)

For the fixed-point form of (A 24), given an initial solution L(0)(τ ), the Picard iteration
approximation can be used; i.e.

L(n+1)(τ ) = L0 exp(−τ ) +

∫ τ

0

S(n)(τ ′, s) exp[−(τ − τ ′)] dτ ′, (A 25)

where

S(n)(τ, s) = (1 − ω)Lb +
ω

4π

∫
4π

L(n)(si)Φ(si , s) dΩi.

When the Picard iteration converges, we have L(n)(τ ) → L(τ ) and S(n)(τ ) → S(∞)(τ ),
as n → ∞. Therefore, the solution to (A 24) can be symbolically written as

L(τ ) = L0 exp(−τ ) +

∫ τ

0

S(∞)(τ ′, s) exp[−(τ − τ ′)] dτ ′. (A 26)

The radiance L(τ ) along a certain direction depends on the time and position in a
particulate flow in which the number of particles per unit total volume is governed
by (A 22). The source function of isotropic scattering particles can be obtained by
solving an integral equation (Modest 1993).
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We consider the problem in the camera object-space coordinate system (m1, m2,
m3). The particulate flow is confined between the control surfaces X3 =Γ1(X1, X2)
and X3 = Γ2(X1, X2). The ray direction through the particulate flow to an observer
is parallel to the optical axis of a camera (the X3 axis). The camera (or observer)
sees the light through the flow from the opposite side of an illuminating source. In
this case, when τ =0 corresponds to X3 = Γ1 and when τ corresponds to X3 = Γ2, the
optical depth is given by

τH =

∫ Γ2

Γ1

β dX3 = wext〈Cext〉a

∫ Γ2

Γ1

N(t, X) dX3. (A 27)

The radiance transmitted through the particulate flow is

L(τH ) = L0 exp(−τH ) +

∫ τH

0

S(∞)(τ ′, s) exp[−(τH − τ ′)] dτ ′. (A 28)

Differentiation of (A 28) with respect to time and use of (A 28) yield

∂L(τH )

∂t
= wext〈Cext〉a

[
S(∞)(τH ) − L(τH )

] ∫ Γ2

Γ1

∂N(t, X)

∂t
dX3. (A 29)

Further, using the disperse phase number equation for the particulate flow, we
have∫ Γ2

Γ1

∂N(t, X)

∂t
dX3 = −

∫ Γ2

Γ1

∇ · (NU) dX3 = −∇12 ·
∫ Γ2

Γ1

NU12 dX3 + n · (NU)|Γ2

Γ1
.

Introducing the path-averaged particle velocity in terms of the particle number

〈U12〉N =

∫ Γ2

Γ1

NU12 dX3

∫ Γ2

Γ1

N dX3

, (A 30)

we have a projected-motion equation relating the radiance to the average particle
velocity

∂L(τH )

∂t
+

[
S(∞)(τH ) − L(τH )

]
∇12 · (〈U12〉NτH )

= wwxt〈Cext〉a

[
S(∞)(τH ) − L(τH )

]
n · (NU)|Γ2

Γ1
. (A 31)

Since the optical depth τH can be converted to the radiance through (A 28), (A 31)
gives a projected-motion equation relating the radiance emitted from the particulate
flow to the path-averaged particle velocity. In particular, for an optically thin medium
(τH � 1), using the approximations τH ≈ [L(τH ) − L0]/[S

(∞)(0) − L0] and L(τH ) ≈ L0,
we have

∂g

∂t
+ ∇12 · (g〈U12〉N ) = wwxt〈Cext〉an · (NU)|Γ2

Γ1
, (A 32)

where g = [L(τH ) − L0]/[S
(∞)(0) − L0]. When the particle scattering and blackbody

emission are neglected outside the particulate flow (S(∞)(0) = 0), g = [L0 −
L(τH )]/L0 = �I/I0, where �I is the change of the image intensity that corresponds
to a difference between the incident radiance and detected radiance associated with
light attenuation through the particulate flow, and I0 corresponds to the light source
intensity. For the solid control surfaces at which the zero-flux condition n · (NU) = 0
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is valid, the boundary terms on the right-hand side of (A 31) and (A 32) vanish.
For a flow in an open space such as pyroclastic flow from an erupting volcano, the
virtual control surfaces can be placed sufficiently far away from the volcano that
NU = 0.

A.5. Scattering image toward incident direction from particulate flow

The radiance through the particulate flow contains three terms, i.e. L(τ, μ) = Q0 +
Qsca +Qbb, where Q0(τ, μ), Qsca(τ, μ) and Qbb are the contributions from the incident
light, particle scattering and blackbody emission, respectively. The expressions for
Qsca(τ, μ) for collimate and isotropic incident light can be obtained by solving an
integral equation (Modest 1993). Without the blackbody emission, when observing
the particulate flow in the general direction of the incident light, we only see the
scattered light from the moving particles, since Q0 = 0 and Qbb = 0. It is assumed that
a ray of the scattered light is parallel to the optical axis of the camera. When an
observer on the outside of the control surface Γ1 sees through it to the control surface
Γ2, the radiance scattered back toward the general incident direction is described by

dL−

dτ− + L− = Qsca(τ
−), (A 33)

where the superscript ‘−’ denotes the ray scattered back toward the general incident
direction (to the observer), and τ− is the optical coordinate at the control surface Γ2

directed to Γ1. The scattering radiance Qsca(τ
−) in (A 33) is taken at the directional

cosine μ = 1. We know the translational relations, τ− = τH − τ and s− = H − s, where
τ is the optical coordinate at Γ1 directed to Γ2. Here, the ray path coordinate s
(or s−) is parallel to the coordinate X3. The distance H between Γ2 and Γ1 is
considered a penetration depth, and the optical depth is

τH =

∫ Γ2

Γ1

β ds =

∫ Γ1

Γ2

β ds−.

The solution to (A 33) for the radiance scattered toward the incident direction is

L−(τ ) = L−(0) exp(−τ−) +

∫ τ−

0

Qsca(τH − τ ′) exp[−(τ− − τ ′)] dτ ′, (A 34)

where L−(0) = L−(τ− = 0) is the scattered radiance at Γ2. The radiance scattered
through the particulate flow in the depth between the control surfaces onto a camera
is

L−(τH ) = L−(0) exp(−τH ) +

∫ τH

0

Qsca(τH − τ ′) exp[−(τH − τ ′)] dτ ′. (A 35)

Differentiating (A 35) with respect to time and using (A 22), the disperse phase number
equation, we have

∂L−(τH )

∂t
+ [R(τH ) − L−(τH )]∇12 · (〈U12〉NτH )

=wwxt〈Cext〉a[R(τH ) − L−(τH )]n · (NU)|Γ2

Γ1
, (A 36)

where

R(τH ) = Qsca(0) +

∫ τH

0

∂Qsca(τ
−)

∂τ−

∣∣∣∣
τH −τ ′

exp[−(τH − τ ′)] dτ ′.

The optical depth τH can be converted to the radiance L−(τH ) through (A 35). For the
light scattered toward the incident direction, (A 36) has the same form as (A 31) for
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the transmitted light through the particulate flow. For τH � 1, using an approximation
τH ≈ [L−(τH ) − L−(0)]/[Qsca(0) − L−(0)], we have

∂g

∂t
+ ∇12 · (g〈U12〉N ) = wwxt〈Cext〉an · (NU)|Γ2

Γ1
, (A 37)

where

g = [L−(τH ) − L−(0)]/[Qsca(0) − L−(0)] = �I/I0,

and �I and I0 are the changes of the image intensity that correspond to L−(τH ) −
L−(0) and Qsca(0) − L−(0), respectively. For L−(τH ) � L−(0), g is approximately the
normalized image intensity that directly responds to the scattered radiance. For many
applications where the blackbody emission is important such as satellite infrared
imaging, these derivations and results are still valid if Qsca is replaced by Qsca + Qbb.

A.6. Laser-sheet-illuminated particle image

In typical planar PIV measurements, a thin laser sheet is used to illuminate particles
seeded in flows, which is viewed by a camera perpendicularly. The particles illuminated
by the laser sheet are between the virtual control surfaces Γ1 and Γ2. Based on the
similar treatment for laser-sheet-induced fluorescence, the scattering from the particles
is proportional to an integral of the number of particles per volume across the laser
sheet, i.e.

L(X1, X2, t) = CL0(X1, X2, X3,m)

∫ Γ2

Γ1

N(X, t) dX3, (A 38)

where C is the scattering cross-section, and L0 is the mean laser-sheet radiance
distribution that is known after intensity attenuation due to absorption and scattering
has been measured a priori. Following the similar procedures described before, we
have

∂g

∂t
+ ∇12 · (g〈U12〉N ) = Cn · (NU)|Γ2

Γ1
, (A 39)

where g =L/L0 = I/I0, and the path-averaged particle velocity 〈U12〉N is defined by
(A 30). The boundary term serving as a source on the right-hand side of (A 39)
represents the contribution from particles that move across the laser-sheet boundary
surfaces and accumulate within the laser sheet. The particle accumulation in a laser
sheet, which is often neglected in planar PIV, has been long recognized as an error
source, and its effect on the determination of the velocity field is clearly shown in
(A 39).

The radiance projected onto the plane (X1, X2) from discrete particles is ideally
described by

g =

M∑
i=1

gi, (A 40)

where the radiance from each particle is modelled by the Gaussian distribution

gi =
1

2πσ 2
i

exp

[
−

(X1 − X1,i)
2 + (X2 − X2,i)

2

2σ 2
i

]
.

The coordinates (X1,i , X2,i) give the centroid location of the ith particle that is a
function of time, while the standard deviation σi defines its size. Substitution of
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(A 40) into (A 39) yields

M∑
i=1

gi

ηi

[
(X1 − X1,i)

(
dX1,i

dt
− 〈U1〉N

)
+ (X2 − X2,i)

(
dX2,i

dt
− 〈U2〉N

)

+ ηi max
(
σ 2

i

)
∇12 · 〈U12〉N

]
= max

(
σ 2

i

)
Cn · (NU)|Γ2

Γ1
(A 41)

where ηi = σ 2
i / max(σ 2

i ). When max(σ 2
i ) → 0 while ηi remains finite, gi approaches a

Dirac delta function, i.e. gi → δ(X1 −X1,i , X2 −X2,i). In this case, the relation between
the velocity of an individual particle and the path-averaged velocity field is

(dX1,i/dt, dX2,i/dt) = δ(X1 − X1,i , X2 − X2,i)〈U12〉N. (A 42)

A lucid connection between the discrete velocity in PIV/PTV and the continuous
path-averaged velocity field is manifested in (A 42) in the differential formulation of
the projected-motion equation.

Appendix B. Algorithm
A discrete scheme is given to solve (7), the Euler–Lagrange equation. For simplicity

of expression, we denote u = (u1, u2) = (u, v) and define

(δxu)i,j = (ui+1,j − ui−1,j )/2,

(δyu)i,j = (ui,j+1 − ui,j−1)/2,

(δxyu)i,j = (ui+1,j − ui+1,j−1 − ui−1,j+1 + ui−1,j−1)/4,

ūx
i,j = (ui+1,j + ui−1,j ),

ūi,j = (ui+1,j + ui+1,j−1 + ui−1,j+1 + ui−1,j−1)/4.

Similarly, we can define (δxv)i,j , (δyv)i,j , (δxyv)i,j , v̄x
i,j and v̄i,j . Using these notations

and the 5-point discrete scheme, (7) becomes

(ggxx − 2h−2g2 − 4αh−2)ui,j + ggxyvi,j

= g(fx − gxt ) − g(2gx(δxu)i,j + gy(δxv)i,j + gx(δyv)i,j )

− h−2g2
(
ūx

i,j + (δxyv)i,j
)

− αh−2ūi,j

ggxyui,j + (ggyy − 2h−2g2 − 4αh−2)vi,j

= g(fy − gyt ) − g(2gy(δxu)i,j + gx(δyu)i,j + gy(δyv)i,j )

−h−2g2
(
(δxyu)i,j + ū

y
i,j

)
− αh−2v̄i,j ,

where h is the spatial step that is typically 1 pixel. This linear system is solved by
using Jacobi’s blockwise iteration method.
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